Character-Level Question Answering with Attention
نویسندگان
چکیده
We show that a character-level encoderdecoder framework can be successfully applied to question answering with a structured knowledge base. We use our model for singlerelation question answering and demonstrate the effectiveness of our approach on the SimpleQuestions dataset (Bordes et al., 2015), where we improve state-of-the-art accuracy from 63.9% to 70.9%, without use of ensembles. Importantly, our character-level model has 16x fewer parameters than an equivalent word-level model, can be learned with significantly less data compared to previous work, which relies on data augmentation, and is robust to new entities in testing.
منابع مشابه
Neural Network-based Question Answering over Knowledge Graphs on Word and Character Level
Question Answering (QA) systems over Knowledge Graphs (KG) automatically answer natural language questions using facts contained in a knowledge graph. Simple questions, which can be answered by the extraction of a single fact, constitute a large part of questions asked on the web but still pose challenges to QA systems, especially when asked against a large knowledge resource. Existing QA syste...
متن کاملPaying Attention to SQuAD: Exploring Bidirectional Attention Flow
With the goal of automated reading comprehension, we apply a neural network with Bidirectional Attention Flow (BiDAF) to the Stanford Question Answering Dataset (SQuAD) and achieve F1 and Exact Match (EM) scores close to the original paper with a single model. We obtain a test F1 score of 76.037 and test EM score of 66.663. Our model includes Character-level CNN embeddings, a Highway Network la...
متن کاملNeural Clinical Paraphrase Generation with Attention
Paraphrase generation is important in various applications such as search, summarization, and question answering due to its ability to generate textual alternatives while keeping the overall meaning intact. Clinical paraphrase generation is especially vital in building patient-centric clinical decision support (CDS) applications where users are able to understand complex clinical jargons via ea...
متن کامل∗NQSotA Continuation Curriculum Learning with Question Answering on the SQuAD Dataset
We implement a slightly simplified Bi-Directional Attention Flow Model[4] and a slightly modified Multi-Perspective Context Matching[6] model for Question Answering on the SQuAD dataset. In the Multi-Perspective model, we add perspective matching between forward and backward contexts. We omit the character-level embeddings of both models, and make a few other small simplifications. We briefly l...
متن کاملارایه یک پیکره پرسش و پاسخ مذهبی در زبان فارسی
Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...
متن کامل